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ABSTRACT

Gravity wave emission by geostrophically balanced flow is diagnosed in numerical simulations of lateral and

vertical shear instabilities. The diagnostic method in use allows for a separation of balanced flow and residual

wave signal up to fourth order in the Rossby number (Ro). While evidence is found for a small but finite

gravity wave emission from balanced flow in a single-layer model with large lateral shear and large Ro, a

vertically resolved model with moderate velocity amplitudes appropriate to the interior ocean hardly shows

any wave emission. Only when static instabilities generated by the shear instability of the balanced flow are

allowed can a gravity wave signal similar to the ones reported in earlier studies be detected in the vertically

resolved case. This result suggests a relatively small role of spontaneous wave emission in the classical sense of

Lighthill radiation, and emphasizes the role of convective or symmetric instabilities during frontogenesis for

the generation of internal gravity waves in the ocean and atmosphere.

1. Introduction

Gravity waves are a ubiquitous feature of the ocean

and are generated by a variety of processes. One of

them, the generation by spontaneous wave emission (e.g.,

Vanneste 2013), has recently attracted considerable at-

tention. The process refers to the generation of gravity

waves by balanced flow spontaneously in the absence of

any external forcing, which appears to happen during

baroclinic or barotropic instability (e.g., Plougonven and

Snyder 2007; Hien et al. 2018; Chouksey et al. 2018), and

is thought to be similar to sound generation in aero-

dynamics (Lighthill 1978; Ford et al. 2000), a process re-

ferred to as Lighthill radiation. Although it is intuitively

clear to a physical oceanographer what balanced flow and

gravity waves are, the exact definition of slow balanced

flow and fast gravity waves is surprisingly difficult, since it

is complicated by the presence of the nonlinear terms

coupling both motions with each other. It is known that

such nonlinearities can generate wavelike structures,

which are nevertheless part of the balanced flow, the so-

called ageostrophic balanced modes or slaved modes

(e.g., Warn et al. 1995; McIntyre and Norton 2000;

Kafiabad and Bartello 2018). The wavelike structures

often seen in numerical simulations of lateral and vertical

shear instabilities of the balanced flow could therefore be

misinterpreted as spontaneous wave emission by the

balanced flow, where in fact they are part of the balanced

flow without the occurrence of spontaneous emission.

The most familiar model for the balanced mode is the

result of the quasigeostrophic approximation, a first-order

asymptotic expansion in the limit of small Rossby (Ro)

and Froude number. Since the zero-order geostrophic

velocity is free of horizontal divergence in that expansion,

any significant horizontal divergence or vertical velocity

seen in model simulations or observations is often inter-

preted as a gravity wave signal. It is, however, clear that

the first-order ageostrophic vertical velocity—which can

be calculated, for example, from the so-called omega

equation (Hoskins et al. 1978)—although of first order in

Ro and thus usually small, could also contribute to the

observed vertical velocity. The ageostrophic vertical and

horizontal first-order velocities in the quasigeostrophic

approximation correspond to the ageostrophic balanced

mode or slaved wave mode (to first order in Ro), and it is

shown in Warn et al. (1995) how this concept of balancedCorresponding author: Carsten Eden, carsten.eden@uni-hamburg.de
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models and wave modes can be extended to higher orders

in Ro. This concept allows in principle to uniquely define

the slow balanced flow and to differentiate the ‘‘true’’ fast

gravitywave signal from that to arbitrary precision in terms

of orders of Ro. The limit for infinitive order is called the

slow manifold (and the difference to the full state the fast

manifold), but it remains unclear if this limit exists (Lorenz

1980; Leith 1980; Lorenz 1986; Ford et al. 2000). In fact, for

simple analogs to the equation ofmotions of the ocean and

atmosphere it can be demonstrated that such an asymp-

totic limit does not exist (Vanneste 2013). In that case, the

expansion in Ro is expected to diverge at large orders of

Ro, although the lower orders of the expansion would still

be useful for practical analysis.

In practice, however, the differentiation of waves and

balanced flow in numerical models turns out to be rather

difficult even at low order, such that the issue of the

actual existence of the slow manifold appears to be of

less concern. McIntyre and Norton (2000) applied a

method to construct balanced models valid to higher

order in Ro to a numerical model of the shallow water

equations on a (half) sphere. They find that the balanced

model simulation agrees surprisingly well with a model

simulation using the full equations including the waves,

such that they conclude that spontaneous wave emission

remains unimportant in that simulation. To our knowl-

edge, similar higher-order balance models have not yet

been applied to numerical simulations of vertically re-

solved models. Therefore, we perform here a similar

analysis as in McIntyre and Norton (2000) but for sim-

ulations of lateral shear instability in an idealized con-

figuration applicable to the ocean for a range of values of

Ro using a novel decomposition method at the discrete

level of the model valid up to fourth order in Ro, and

also extend this to the more realistic case of a vertically

resolved model having also vertical shear instability.

In the next section, the theoretical background of the

concept to differentiate waves from the balanced flow is

outlined, while in section 3 the method is applied to nu-

merical models of lateral and vertical shear instability. The

last sectionprovides a summary anddiscussionof the results.

2. Theoretical background

The theoretical background for the method to di-

agnose the model simulations following Warn et al.

(1995) and Kafiabad and Bartello (2018) is outlined in

this section. The focus is here on the analytical formu-

lation, but since it is found that the numerical evaluation

of the balanced modes needs exact consistency also on

the discrete level of the numerical models, all relations

on the discrete level which are actually used for the di-

agnosis are given in the appendix.

a. The model

We consider the equations of motions in hydrostatic

and Boussinesq approximation for a constant Coriolis

parameter f and constant background stability fre-

quency N. The resulting primitive equations are scaled

using 1/f , L, H, and U as time scale, horizontal and

vertical length scale, and horizontal velocity scale, re-

spectively. The vertical velocity scale follows from the

continuity equation, the pressure scale from geostrophic

balance, and the buoyancy perturbation scale from hy-

drostatic balance. This yields1

›
t
u1 u

:
1=p52Ro(u � =u1w›

z
u),

›
t
b1w52Ro(u � =b1w›

z
b) (1)

together with the diagnostic relations ›zp5 b and

= � u1 ›zw5 0. The only parameter in Eq. (1) control-

ling the nonlinear terms is the Rossby number

Ro5U/(Lf ) by setting Ro5Fr, where Fr is the Froude

number Fr5U/(NH). By this setting, the (unscaled)

first baroclinic Rossby radius Lr 5NH/f becomes Lr 5
L. The case Ro � 1 is appropriate to the stratified in-

terior ocean, while a larger Ro approaching unity is

more appropriate to the so-called submesoscale flow

which occurs for instance close to or in the mixed layer

of the ocean. The scaled linearized kinematic surface

and bottom boundary conditions become

›
t
pj

z50
52g

ð0
2h

= � u dz, w
z52h

5 0 (2)

with the scaled water depth h, the parameter

g5L2
0/L

2 � 1 and the (unscaled) barotropic Rossby

radiusL0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(9:81m s22)

p
/f . Vertically integrating the

buoyancy equation and the hydrostatic relation yields

›
t
p1M(= � u)5Ro

ð0
z

dz0(u � =b1w›
z
b) (3)

with the integral operator M5 g
Ð 0
2h
dz1

Ð 0
z
dz0
Ð z0
2h
dz00.

Equation (3) can be used to replace the hydrostatic re-

lation and the buoyancy equation in Eq. (1).

b. The vertical modes

The operatorM yields the vertical or baroclinic modes

by its scaled eigenvalues c2n and eigenfunctions fn.

Taking ›zz of the eigenvalue equation M(fn)5 c2nfn

yields

1All vectors are horizontal. The vector u
:
denotes anticlockwise

rotation of the vector u by p/2, that is, u
:
5 (2y, u) for u5 (u, y).
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c2n›zzfn
1f

n
5 0, (4)

which is the equivalent eigenvalue equation formulated

as differential equation. Considering ›zM(f) at z52h

andM(f) and ›zM(f) at z5 0, the boundary conditions

to the eigenvalue problem are derived as

f
n
j
z50

1 g›
z
f

n
j
z50

5 0, ›
z
f
n
j
z52h

5 0: (5)

Note that by the surface boundary condition, the eigen-

vectors fn are not the ones for a rigid lid, but modified by

the free surface and given by fn 5An cos(z1 h)/cn with

tanh/cn 5 cn/g. Approximate solutions of cn for g � 1

correspond to the different zero crossings of the tangent

function and are c20 ’ gh and c2n ’ h2/(np)2 for n. 0. The

constant amplitude An is chosen to satisfy the ortho-

normality condition
Ð 0
2h
fmfn dz5 dn,m.

The eigenfunctions of the operator M allow to diag-

onalize the linear part of the system. The variables

p and u are therefore expressed in terms of the ei-

genfunctions or vertical modes as

p5�
n

p
n
(x, y, t)f

n
(z), u5�

n

u
n
(x, y, t)f

n
(z) (6)

and b5�npn›zfn and w5�nc
2
n= � un›zfn, which fol-

lows from the hydrostatic relation and the continuity

equation. Using the expansion Eq. (6) in Eq. (7) and in

the momentum equation from Eq. (1), multiplying with

fm and integrating over depth yields

›
t
u
n
1 u

n
:
1=p

n
5Ronn

u, ›
t
p
n
1 c2n= � u

n
5Ronn

p (7)

with nn
u 52

Ð 0
2h
dzfn(u � =u1w›zu) and nn

p 5Ð 0
2h
dzfn

Ð 0
z
dz0(u � =b1w›zb). Equation (7) has in prin-

ciple the same algebraically structure as a single-layer

model, since the different vertical modes n are only

coupled by the nonlinear terms nu and np. The equiv-

alent nonlinear terms for a single-layer model with

layer thickness pn and layer velocity un are nn
u 52un �

=un and nn
p 52= � pnun, which would replace the right

hand sides in Eq. (7).

c. The spectral representation

Assuming a double-periodic domain and applying the

Fourier ansatz

u
n
(x, t)5

ð‘
2‘

dk û
n
(k, t)eik�x, p

n
(x, t)5

ð‘
2‘

dk p̂
n
(k, t)eik�x

(8)

with wavenumber vector k5 (kx, ky), yields in Eq. (7)

after multiplication with e2ik�x and integration over x,

›
t
ẑ2 iA � ẑ5Ron̂, A5

0
B@

0 2i 2k
x

i 0 2k
x

2c2nkx
2c2nky

0

1
CA ,

(9)

with the state vector ẑ5 (û, p̂)T, the vector of the non-

linearities n5 (nu, np)
T, and its Fourier transform

n̂5 (2p)22Ð
dxne2ik�x. The index n denoting the baro-

clinic mode number is omitted in Eq. (9) for simplicity.

The matrix A has eigenvalues vs and right and left eigen-

vectors qs 5 (qs
u,q

s
y,q

s
p)

T and ps 5 (ps
u, p

s
y, p

s
p), respec-

tively. The index s denotes here either the slow linear

geostrophicmode (for s5 0) or the fast linear gravity wave

mode (for s56). For the latter there are two linear waves

modes with s51 and s52. The eigenvaluesvs are given

by the geostrophic mode v0 5 0 and the fast mode

v6 56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 c2njkj2

q
. The latter is also the dispersion re-

lation of long gravity waves in the system.

It is useful to project Eq. (9) on the fast or slow modes

using the eigenvectors of A. The fast or slow mode am-

plitude gs 5 ps � ẑ is then governed by

›
t
gs 2 ivsgs 5Rops � n̂52iRoIs(g0, g6), s5 0,6 ,

(10)

where the case s5 0 corresponds to the slow geostrophic

mode with amplitude g0, and s56 to the (two) fast

gravity wavemode with g1 and g2. For Ro5 0, that is, in

the linear case, Eq. (10) describes the fast oscillation in

time of the gravity waves g6 5 eiv
6t, and the stationary

solution for the slow mode g0 5 const. The nonlinear

terms in n̂ couple themodes gs at different k, but also the

slow and fast modes which is expressed here by the

nonlinear interaction integral Is(g0, g6).

d. The interaction integral

The exact form of the interaction integral Is is in

principle not relevant here since it will not be evaluated

directly—which is also possible, see, for example, Eden

et al. (2019)—but calculated from numerical models.

For the expansion into orders of the small parameter Ro

which is performed below, however, we need to know

about the general structure of the interaction integral.

For the single-layer model with nu 52u � =u and

np 52= � pu, the nonlinear terms become

n̂(k)52i

ð
dk

1

ð
dk

2
N d(k

1
1 k

2
2 k),

N5

8>><
>>:

[û(k
1
) � k

2
]û(k

2
)

[û(k
1
) � k

2
]ŷ(k

2
)

p̂(k
2
)û(k

1
) � (k

1
1 k

2
)

9>>=
>>; , (11)

and the integral Is
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Is(g0, g6)5 ips � n̂5
ð
dk

1

ð
dk

2 �
s1,s250,6

gs1 (k
1
)gs2 (k

2
)C

s,s1,s2
k,k1,k2

d(k
1
1 k

2
2 k) (12)

for the modes s5 0, 6. The so-called interaction co-

efficients C result from the projection of N on the ei-

genvector ps and are given in Eden et al. (2019). For the

primitive equation model the structure of the integral Is

is similar to Eq. (12), but a double sum over the vertical

modes will add and the interaction coefficient are dif-

ferent [and also given for the rigid lid case in Eden et al.

(2019)]. In any case, the slow and fast mode amplitudes

gs will show up quadratically in a double sum over the

fast and slow modes s, which is true for all kinds of

models with quadratic nonlinearities.

By resolving and rearranging the double sum of the

slow and fast modes s1, s2, the integral I
s in Eq. (12) can

therefore also be written as

Is(g0, g6)5 Is(g0, 0)1 Is(0, g6)1Ks(g0, g6) (13)

with

Is(g0, 0)5

ð
dk

1

ð
dk

2
g0(k

1
)g0(k

2
)C

s,0,0

k,k1,k2
d(k

1
1 k

2
2 k) ,

Is(0, g6)5

ð
dk

1

ð
dk

2 �
s1,s256

gs1 (k
1
)gs2 (k

2
)C

s,s1,s2
k,k1,k2

d(k
1
1 k

2
2 k) ,

Ks(g0, g6)5 2

ð
dk

1

ð
dk

2 �
s256

g0(k
1
)gs2 (k

2
)C

s,0,s2
k,k1,k2

d(k
1
1 k

2
2 k) , (14)

and similar for the primitive equation model but in-

volving sums over all vertical modes. Equation (13) and

Eq. (14) are used below to assess the orders of Is(g0, g6)

in terms of Ro expanding the amplitudes gs into a power

series of Ro.

e. The balanced models

The spectral representation of the primitive equations

given by Eq. (10) describes the evolution of the gravity

wave amplitudes g6 and the slow geostrophic mode g0,

and how they are coupled by the interaction integral Is.

Due to this coupling, the definition of a slow balanced

flow must involve not only the linear geostrophic mode

g0, but also the linear gravity wave amplitudes g6. A

method to uniquely describe the balanced part of the

flow in this framework to any order in Ro is described by

Warn et al. (1995). The method originates from the

problem of balanced model initialization in numerical

weather prediction, pioneered by Machenhauer (1977)

and Baer and Tribbia (1977). The task in that problem is

to provide an initial condition for a model for which a

subsequent integration shows no or only a weak fast

adjustment by gravity wave activity. Such an initial

condition is then considered to be a balanced state.

Warn et al. (1995) assume accordingly a state in which

the gravity waves are initially vanishing and then weakly

growing in amplitude, such that g6 5O(Ro) and expand

the gravity wave amplitudes accordingly as

g6 5Rof61 1Ro2f62 1Ro3f63 1 � � � (15)

The time derivative in Eq. (10) includes the fast

gravity wave oscillations with frequency v6 and the

slow growth and decay of the amplitudes g0,6 of

both slow and fast mode by the nonlinear in-

teractions. Therefore, a fast and slow time scale is

introduced with T5Rot* and ›t 5Ro›T 1 ›t*. The

slow mode g0 is a function of the slow time T only

since v0 5 0, and thus Eq. (10) becomes for the geo-

strophic mode s5 0

Ro›
T
g0 52iRoI0(g0, g6). (16)

Since the wave mode g6 is assumed to be of first order in

Ro, from Eq. (13) and the form of the integrals in

Eq. (14), it follows that the first order of Eq. (16) simply

becomes

›
T
g0 52iI0(g0, 0). (17)

This first-order balanced model is identical to the fa-

miliar (first order) quasigeostrophic approximation as

shown by Leith (1980). Only the slowmode amplitude g0

is involved in this first-order balanced model, and in this

way Eq. (17)—which is a spectral representation of the

quasigeostrophic potential vorticity equation—is closed.

The second order of Eq. (10) for the geostrophic mode

s5 0 becomes

05K0(g0, f61 )5 I0(g0, f61 )2 I0(g0, 0)2 I0(0, f61 ), (18)

using again Eq. (13) and thus with Eq. (17)
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›
T
g0 52iI0(g0, f61 )1 iI0(0, f61 ). (19)

Together with the diagnostic expression for the auxiliary

wave amplitude f61 , which is derived below, Eq. (19) is a

second-order balanced model. Since the expression for

f61 involves the geostrophic mode amplitudes g0 only,

the second-order balanced model is also closed. Third-

order yields accordingly a third-order balanced model

given by

›
T
g0 52iI0(g0, f62 )1 iI0(0, f62 )2 iI0(0, f61 ) (20)

and so on for higher order. Again, the expression for f62
given below involves the geostrophic mode amplitudes

g0 only. If the asymptotic expansion in Ro would con-

verge, balanced models to arbitrary order of Ro could in

principle be constructed, which are closed with respect

to the geostrophic mode g0. The remaining task to find

the auxiliary wave modes f6n is demonstrated in the next

section.Wewill define the deviation from an actual state

from the state given by g0 together with the auxiliary

wave modes f6n , as the nonbalanced or fast gravity

wave mode.

f. The ageostrophic balanced modes

The auxiliary wave modes f6n are also called

ageostrophic balanced modes or slaved wave modes

(Warn et al. 1995; McIntyre and Norton 2000; Kafiabad

and Bartello 2018) and are part of the balanced mode

since they evolve only slowly as seen below. The lowest

order of those modes, f61 , corresponds to the first-order

(ageostrophic) variables in the quasigeostrophic ap-

proximation (Leith 1980). The ageostrophic balanced

modes are not needed to predict the evolution of

the geostrophic variables given by g0 to the first

order, that is, they are not needed and in general

unknown in the quasigeostrophic model, but for the

higher-order balanced models they are needed and

diagnostic relations for f6n need to be derived. To first

order in Ro, Eq. (10) becomes for the gravity wave

modes s56

›
t*f

6
1 2 iv6f61 52iI6(g0, 0), (21)

using again Eq. (13) and Eq. (14) to infer the first order

in Ro of the interaction integral I6. The time derivative

in Eq. (21) generates the fast wave oscillation with fre-

quency v6. To suppress this fast oscillation in the bal-

anced state, it is necessary to balance f61 as

f61 5 I6(g0, 0)/v6. (22)

This balancing of f61 yields ›t*f
6
1 5 0 in Eq. (21) and thus

no waves are generated. Equation (22) is therefore the

diagnostic relation which completes the second-order

balance model in Eq. (19). It was shown by Leith (1980),

that the ageostrophic balanced mode f61 corresponds to

the first iteration step in the balanced initialization

technique by Machenhauer (1977), and that f61 also

corresponds to the ageostrophic variables in the (first

order) quasigeostrophic approximation.

Setting ›t*f
6
n 5 0 to suppress wave activity in general,

Eq. (10) for s56 becomes

�
n51

‘

(Ron11›
T
2 iv6Ron)f6n 52iRoI6(g0, 0)

2 iRoI6
�
0, �

n51

‘

Ronf6n

�
2 i�

n51

‘

Ron11K6(g0, f6n ), (23)

using again Eq. (13). From the form of the integrals in

Eq. (14) it becomes clear that the second, third, and

fourth orders are given by

›
T
f61 2 iv6f62 52iK6(g0, f61 )

›
T
f62 2 iv6f63 52iI6(0, f61 )2 iK6(g0, f62 )

›
T
f63 2 iv6f64 52iI6(0, f61 1 f62 )1 iI6(0, f61 )

1 iI6(0, f62 )2 iK6(g0, f63 ). (24)

From the first line of Eq. (24), f62 is calculated, from the

second line f63 , etc. Since only slow time derivatives

show up, the ageostrophic balanced modes f6n are only

slowly evolving in time as the geostrophic mode. The

combination of geostrophic mode amplitude g0 and f6n
given by g0q0 1�iRoif6i q6 defines the balanced mode

in spectral space, and inverse Fourier transform yields

the balanced flow in physical space

In practice, we evaluate the interaction integral I6

from a numerical model to find f6n up to fourth order.

The term K6(g0, f6n ) is given by Eq. (13) replacing g6

with f6n and found by evaluating the integrals I6 using

the numerical model. To find ›Tf
6
1 , Eq. (22) is analyti-

cally differentiated with respect to T as in Kafiabad and

Bartello (2018), which yields

›
T
f61 5 ›

T
I6(g0, 0)/v6 5 [I6(g0 1 ›

T
g0, 0)2 I6(g0, 0)

2 I6(›
T
g0, 0)]/v6 (25)

using the relation I6(g0 1 ›Tg
0, 0)5 I6(g0, 0)1

›TI
6(g0, 0)1 I6(›Tg

0, 0), which derives from the defi-

nition of the integral Is, and using ›Tg
0 52iI0(g0, 0).

To find ›Tf
6
2 and ›Tf

6
3 , the corresponding expres-

sions get too complicated, and f62 and f63 are numer-

ically differentiated in time by integrating the full

model a few time steps as suggested by Baer and

Tribbia (1977).
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g. The effect of damping

In the numerical model it is necessary to include

damping to suppress the gridscale noise generated by

artificial numerical wave dispersion and the finite rep-

resentation of the interaction integral Is. The primitive

equations are therefore equipped with biharmonic op-

erators 2A=4u and 2A=4b, with a viscosity (or diffu-

sivity)A;O(Ro) to damp the gridscale noise. The same

parameter A is used for momentum and buoyancy since

then the only effect of the numerical damping is that the

matrix A gets identical entries iAjkj4 on the diagonal

[instead of zero for the case of vanishing damping as

in Eq. (9)], the eigenvectors will stay identical as for

the case A5 0, and the eigenvalues become complex

with identical real part as for A5 0, but with imaginary

part Ajkj4.
There is however a complication: in Eq. (3), a term

2A=4p shows up—which enters the matrix A on the

diagonal in the spectral representation—but also a

damping term A=4pjz50 involving the surface pres-

sure. By this term, the vertical modes get coupled not

only by the nonlinear terms but also by the numerical

damping. To avoid this coupling, the surface boundary

condition is also equipped with damping and Eq. (2) is

replaced by

›
t
pj

z50
52g

ð0
2h

= � u dz2A=4pj
z50

. (26)

Vertical friction and mixing are not used here, since we

find it difficult to avoid the coupling of the vertical

modes in the discrete version of the equations. However,

the lateral biharmonic damping is found to be sufficient

to control gridscale noise in the numerical integrations.

Introducing the numerical damping terms, the eigen-

values vs obtain an imaginary part of O(Ro) which

needs to be taken into account in the expansion. The first

to fourth orders of the fast mode amplitude Eq. (10)

then become

R(v6)f61 5 I6(g0, 0)
›
T
f61 2 iR(v6)f62 52iK6(g0, f61 )2 f61 I(v6)/Ro

›
T
f62 2 iR(v6)f63 52iI6(0, f61 )2 iK6(g0, f62 )2 f62 I(v6)/Ro

›
T
f63 2 iR(v6)f64 52iI6(0, f61 1 f62 )1 iI6(0, f61 )1 iI6(0, f62 )2 iK6(g0, f63 )2 f63 I(v6)/Ro. (27)

Since the magnitude of I(v6)5Ajkj4 strongly depends
on wavenumber, we find that the damping effect can in

practice become zero order in Ro for large k. In that

case, Eq. (22) and Eq. (24) are used replacing Eq. (27) to

determine f6n for large k, but using the complex v6.

3. Numerical experiments

Numerical simulation of shear instabilities of bal-

anced flow are diagnosed in terms of ageostrophic bal-

anced modes given by Eq. (27). A single-layer model

and a primitive equation model are used. Although less

realistic than the primitive equation model, we use the

single-layer model here because of its reduced com-

plexity for which the method can be easier applied and

tested. Further, it is possible to generate larger lateral

shear in the initial conditions in the single-layer model,

since in the primitive equation model too strong shear

can generate convective or symmetric instabilities dur-

ing the subsequent integration, even when the initial

conditions are convectively stable.

The spatial discretization of the primitive equation

model is outlined in the appendix, and it follows

the example of standard C-grid oceanmodels such as the

MITgcm (Marshall et al. 1997). The discretization of the

single-layer model is similar and detailed in Eden et al.

(2019). The time-stepping scheme in both models is

Euler forward for the first time step and afterward an

Adam–Bashforth two-time level interpolation with ad-

justed weights to allow for a stable integration. In the

primitive equation model, all vertical modes including

the barotropic mode are integrated explicitly with suf-

ficiently small time step, since we find that using an

implicit method to solve for the barotropic mode to

allow for a larger time step, the diagnostic of the higher-

order ageostrophic balanced modes becomes inaccu-

rate. The time step in the model is chosen according to

the criteria given in the appendix.

a. The wave diagnostic

The following method to differentiate gravity waves

from balanced flow in the model solution is applied: any

given model state (u, p) from the primitive equation

model is projected on the vertical eigenfunctions using

the discrete version of the eigenvalue problem appropriate

to the numerical model given in the appendix. For the

single-layer model, this first step is not necessary. Then an

horizontal Fourier transform is applied to (un, pn) and the

spectral amplitudes are projected on the left eigenvector

p0 of the discrete version of the system matrix A to ob-

tain the slow mode amplitude g0. The inverse (vertical

and horizontal) transform of g0q0—where q0 is the right
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eigenvector ofA—is then used to calculate the nonlinear

tendency terms in the numerical model, which yields

I6(g0, 0) after forward transform and projection on p6,

and thus finally f61 from Eq. (27). Corresponding

steps yield the other ageostrophic balanced modes f6i .

The inverse (vertical and horizontal) transform of

g0q0 1�K

i51Roif6i q6 yields the balanced part of order

K of the model state. The difference to the actual

model state is interpreted as the residual gravity

wave signal.

b. The single-layer model

The single-layer model on a double periodic domain

size of 10 3 5 is initialized with an unstable zonal flow

with an initial profile of u(y)5 (2 exp[2(y2 1:25)2/0:12 2
(y2 3:75)2/0:12], 0) to which a small random perturbation

is added. The initial conditions are balanced to first

order, higher-order balances do not change the results

discussed here. Since we use scaled equations as de-

tailed after Eq. (1), the scaled Coriolis parameter is set

to one and we also choose c5 1, such that the single

layer corresponds to the first baroclinic mode using the

scaled depth h5p. The domain is resolved with 400 3
200 grid points and we choose biharmonic friction and

mixing operators as detailed in section 2g with diffu-

sivity A5 (Ro/2)Dx4. The zonal jet begins to meander

and dissolves finally into eddies in the simulations. The

length scale of the eddies is close to the scaled (first

baroclinic) Rossby radius c5 1, which determines our

choice of the model domain. Increasing the resolution

of the model domain therefore does not changemuch the

results presented here since the lateral shear instability is

well resolved.

We present simulations with the single layer using

different parameters, from Ro5 0:02 to Ro5 0:3, that

is, ranging from mesoscale conditions with small Ro to

the so-called submesoscale conditions with finite Ro.

Table 1 presents statistics of the local Rossby number

Rol 5Roj›xy2 ›yuj after the onset of the instability in

the simulations, showing that locally much larger Rol

can be reached in the simulations than specified by the

parameter Ro.

Figure 1 shows a time series of the ageostrophic bal-

anced zonal velocity and the residual wave signal up to

fourth order and the full thickness p at x5 0 in a simu-

lation with Ro5 0:1. With the onset of the instability at

t’ 10, the ageostrophic balanced mode increases in

amplitude in all orders. Figure 1a shows the zonal velocity

of the first-order ageostrophic mode u1 and Fig. 1b shows

u2 u0. We call u0 and ui the zonal velocity corresponding

to the inverse transform of g0q0 and Roif6i q6, respec-

tively, while u denotes the actual zonal velocity in the

model. Note that u1 is the first-order ageostrophic

velocity in quasigeostrophic approximation. Since the

difference between u1 and u2 u0 is very small, there is

no residual wave signal in the first order. The same is

true for the second order, shown in Figs. 1c and 1d, and

also for the third order (Figs. 1e,f).

Only in the fourth order (Figs. 1g,h) do small differ-

ences between u4 and u2 u0 2 u1 2 u2 2u3 begin to

show up, which points to a small residual gravity wave

signal in the fourth order. This residual wave signal in-

creases going to larger Ro. Figure 2 shows that the wave

signal begins to emerge for Ro5 0:15 already in the

third order, and that at fourth order a clear large-scale

near-inertial wave signal is present.

Figure 3a shows the residual wave energy EK 5

ju2�K

n50unj2=21
�
p2�K

n50pn

�2
=2 as a function of Ro

normalized with the total energy juj2/21 p2/2 (which

does not vary much for different Ro) during the peak of

the instability in the simulations. The first-order residual

energy E1 scales as Ro4 such that all the energy can be

attributed to the second-order ageostrophic balanced

mode for all Ro, since the amplitude of the second-order

ageostrophic balanced mode scales as Ro2. Correspond-

ingly,E2 scales roughly as Ro6 andE4 as Ro8 for small Ro,

but this scaling behavior gets distorted for larger Ro due to

the emergence of the residual gravity wave signal seen in

Fig. 2. An exponential fit; exp(22/Ro) seems to fit the

residual gravity wave signal. For small Ro, however, the

exponential fit deviates, and also E4 does not scale as

Ro10 for small Ro. This points toward a problem in the

diagnosis of the fourth-order ageostrophic balanced

mode with our method, most likely due to numerical

precision errors. In any case, the diagnostics reveals a

finite gravity wave signal for Ro. 0:1. This wave sig-

nal could be related to spontaneous gravity wave

emission generated by shear instability of the balanced

flow, but note that local Rossby numbers Rol in Table 1

exceed unity such that symmetric instability due to

lateral shear becomes possible. Therefore, the wave

signal could also relate to this instability process instead

TABLE 1. Spatial mean Rol , spatial maximum Rom 5max(Rol),

and mean of the largest 5% Ro5% of the actual local Rossby number

Rol 5Roj›xy2 ›yuj in the simulations with the single-layermodel for

different parameters Ro after the onset of the instability.

Ro Rol Rom Ro5%

0.02 0.04 0.30 0.21

0.05 0.10 0.75 0.52

0.10 0.20 1.49 1.04

0.15 0.28 2.23 1.49

0.20 0.32 2.80 1.70

0.25 0.34 3.45 1.49

0.30 0.41 4.00 1.77
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of spontaneous gravity wave emission in the classical

Lighthill sense.

c. The primitive equation model

The primitive equation model is configured similar to

the single-layer model on a double periodic domain of

size 53 53 1 resolved by 2553 2553 40 grid points, in

the zonal, meridional, and vertical direction, respec-

tively. The model is initialized with a zonal velocity

shaped in the horizontal identical to the single-layer

model, but here with the first vertical mode as vertical

structure. The initial velocity, pressure, and buoyancy

fields are balanced to first order in Ro; higher-order

balancing does not change the results. Since we use

scaled equations, the (scaled) background stratification

(or Brunt–Väisälä frequency) is one and the Coriolis

parameter is also one. Compared to the single-layer

model, the amplitude of the initial zonal velocity u is

reduced to 0.2 to exclude the occurrence of static in-

stabilities with ›zb#21 that arise at higher amplitudes

of u and show up locally in the simulations. The scaled

first baroclinic Rossby radius isLr 5 c1 5 1/p, which is as

in the single-layer model close to the length scale of

the instabilities showing up after finite time in the in-

tegrations, and also determines the choice of the

model domain. Therefore, increasing the horizontal and

FIG. 2. As in Fig. 1, but for Ro5 0:15.

FIG. 1. (top) The ageostrophic balanced zonal velocity and (bottom) residual wave signal up to fourth order at x5 0 for Ro5 0:1 in the

single-layer model. The terms u0 and ui denote the zonal velocity corresponding to the inverse transform of g0q0 and Roif6i q6, re-

spectively. Also shown is the full thickness p as contour lines. Note the differences in the color scales.
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vertical resolution does not change the integrations

significantly and also does not affect the decomposition

into balanced and unbalanced flow.

The scaled barotropic Rossby radius L0 is set to 5 by

adjusting the parameter g5L2
0/L

2
r accordingly. Larger

values of L0 do not change the simulations much, but

require a much smaller time step, therefore this rather

small ratio between L0 and Lr is chosen. The lateral

damping is identical to the single-layer model. While we

time step the model only once in the single-layer model

to calculate ›Tf
6
n in Eq. (27), we find it necessary to

calculate 50 time steps in the primitive equation model

since otherwise large gridscale noise shows up in the

higher-order f6n . Furthermore, it is necessary to ex-

change Eq. (27) with Eq. (22) and Eq. (24) but with

complex v6 for the 40 largest wavenumbers, as dis-

cussed in section 2g.

As for the single-layer model, we present simula-

tions for different Ro with a range from Ro5 0:10 to

Ro5 0:60, that is, from mesoscale conditions with

small Ro to the so-called submesoscale conditions with

finite Ro. Table 2 presents statistics of the local Rossby

number Rol 5Roj›xy2 ›yuj after the onset of the in-

stability in the simulations. Although smaller in general

than in the single-layer model because of the reduced

initial zonal velocity amplitude, also here larger Rol are

reached locally in the simulations than specified by the

parameter Ro.

Figure 4 shows the ageostrophic balanced vertical

velocity up to fourth order, that is, fromw1 tow4 and the

corresponding residual wave signals in the primitive

equation model after the onset of the instability for

Ro5 0:5. Again, the first-order ageostrophic vertical

velocity w1 is very similar to the actual vertical velocity,

and the second-order balanced vertical velocity w2 is

very similar to w2w1, which is the second-order re-

sidual signal. This similarity between w2 and w2w1

indicates that most of the residual signal seen in w2w1

is in fact related to the balanced mode (and is the so-

called ageostrophic balanced mode or slaved mode),

and not to the unbalanced wave signal it appears to be.

Note that w1 corresponds to the quasigeostrophic

vertical velocity, which can also be diagnosed from

the omega equation (not shown), and that w2 is an

order of magnitude smaller but still entirely related

FIG. 3. (a) Total residual wave energy EK 5 ju2�K

n50unj2=21p2
�
�K

n50pn

�2
=2 for K5 1, . . . , 4 normalized with the total energy

integrated over the model domain at the peak of the instability in the single-layer model. The term E1 corresponds to the uppermost dots

and E4 to the lowest dots. (b) As in (a), but for the primitive equation model and with total residual wave energy EK 5

ju2�K

n50unj2=21
�
b2�K

n50bn

�2
=2 also normalized with the total energy. Dashed lines show different power laws Ro4, Ro6, and Ro8,

and the dotted line in (a) an exponential scaling law exp(22/Ro).

TABLE 2. As in Table 1, but at the surface of the primitive

equation model. The last line shows the same quantities but for the

simulation with a larger amplitude of 1 in the zonal velocity of the

initial condition instead of 0.2.

Ro Rol Rom Ro5%

0.10 0.01 0.19 0.10

0.15 0.02 0.28 0.15

0.20 0.03 0.37 0.19

0.25 0.03 0.45 0.25

0.30 0.04 0.53 0.31

0.35 0.05 0.62 0.34

0.40 0.06 0.70 0.40

0.45 0.07 0.77 0.47

0.50 0.07 0.88 0.46

0.55 0.08 0.92 0.58

0.60 0.08 1.01 0.57

0.10 0.08 1.10 0.53
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to the balanced mode. There is also good agreement

between w3 and w2w1 2w2 but small differences al-

ready show up, while w4 deviates more from the cor-

responding residual wave signal. This behavior is also

seen for smaller Ro, that is, agreement up to w3 but

deviation for w4.

The apparent wave signal at fourth order (i.e., in

w2w1 2w2 2w3 in Fig. 4) for small Ro is most likely

related to numerical precision errors and not to a wave

signal. This can be seen in Fig. 3b in which the total re-

sidual energy at the fourth order (E4) shows a very

similar scaling to that of the third order (E3). Since E3

contains mostly ageostrophic balanced modes (as seen

in Fig. 4 for Ro5 0:5 which also holds for different Ro),

this indicates that the fourth-order residual energy E4 is

also largely composed of the ageostrophic balanced

modes. Thus, the wavelike signals seen in vertical ve-

locity in Fig. 4h are only an apparent signal, arising most

likely from a numerical artifact, which we have not been

able to remove2, although we use the discretized equa-

tions consistent on the grid level to eliminate numerical

inaccuracy (we found that small inconsistencies on the

discrete level can lead to first-order inaccuracies in the

flow decomposition). Similar to Fig. 3a, however, for

Ro. 0:5 a deviation from the corresponding power laws

is seen in all En in Fig. 3b, but here for much larger Ro.

These results leads us to conclude that the residual wave

signal is very small in this configuration of the primitive

equation model and begins to be detectable with our

decomposition method only at very large Ro. Then it

appears to follow also an exponential power law as in

Fig. 3a. We therefore conclude that there is hardly any

spontaneous wave emission by the shear instability of

the balanced flow in this model simulation for Ro, 0:5.

The situation changes when allowing for amplitudes

of the zonal velocity in the initial conditions larger

than 0.2. In this case, however, static instabilities with

›zb#21 are generated by the growing shear instability,

even when the initial conditions are stably stratified.

This is not the case in the previous model experiment,

where the amplitude was chosen as large as possible but

without static instabilities in the simulations. For the

experiment with larger velocity amplitudes, we thus

apply a convective adjustment to the model with a ver-

tical diffusivity, which takes a value ofK5 1 if ›zb,21

and K5 0 elsewhere, but we do not account for this con-

vective adjustment in the diagnostic of the ageostrophic

balanced mode.

Figure 5 shows the ageostrophic balanced vertical

velocity up to third order, w1, w2, and w3, and the cor-

responding residual wave signals (i.e., w, w2w1,

w2w1 2w2) for an initial zonal velocity amplitude of 1

and for Ro5 0:1. The actual local Rossby numbers Rol

for this simulation are also listed in Table 2. They are

larger than in the previous simulations with the primi-

tive equationmodel avoiding static instabilities. Already

in the vertical velocity w a wave signal is present which

dominates in the second and higher orders over the

balanced mode which is shown in Figs. 5a, 5c, and 5e.

The wave crests in Figs. 5b, 5d, and 5f are oriented

roughly perpendicular with a wavelength of about 0.2–

0.3 with a larger vertical mode than the initial condi-

tions. The emergence of the wave signal shows up for all

Ro we have tested (0.02–0.3) and can be related to the

regions of static instabilities with (or close to) ›zb#21

in space and time.We therefore conclude that the waves

FIG. 4. (top) Ageostrophic balanced vertical velocity (color; from w1 to w4) and (bottom) residual wave signal (from w2w1 to

w2�3

i51wi) up to fourth order at z5 0:2 in the primitive equation model for Ro5 0:5. The term wi denotes the vertical velocity cor-

responding to the inverse transform of Roif6i q6. Shown is a time step after the onset of the instability. Also shown is the full pressure as

contour lines. Note the different color scales.

2 Note that tests with balanced initializations of the primitive

equation model without any subsequent instability also show the

absence of a fast adjustment by gravity waves up to third order,

but a fast wave signal due to an adjustment from the initial con-

ditions in the fourth order, indicating an imperfect balanced ini-

tialization on this order. These integrations are, however, not

presented here.
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we do detect in our simulations are actually generated

by convective or symmetric instabilities occurring in

regions where ›zb;21—or where potential vorticity

becomes negative as criterion for symmetric instability

(Olbers et al. 2012)—but not by spontaneous wave

emission.

Experiment with the primitive equation model with-

out strong lateral but vertical shear, where predomi-

nantly baroclinic instability shows up, behaves the same

as the above discussed experiments. For amplitudes in

vertical shear that do not generate static instabilities,

hardly any wave signal is detected, only with increased

shear and occasional static instabilities a clear wave

signal similar to Fig. 5 is generated.

4. Summary and discussion

This study is an elaborate attempt to find spontaneous

gravity wave emission during lateral and vertical shear

instability of balanced flow. We have designed a novel

numerical tool to uniquely differentiate the slow balanced

flow from the fast gravity waves up to fourth order

based on an asymptotic expansion in theRossby number

Ro as suggested in, for example, Warn et al. (1995) and

Kafiabad and Bartello (2018). Here, we apply the

method the first time up to fourth order and in a model

of growing instabilities to answer the specific question of

spontaneous wave emission and its dependency on Ro,

whereas the method was applied to a model of decaying

isotropic turbulence by Kafiabad and Bartello (2018)

only up to second order in Ro. The concept is applied

here on the discrete level of the numerical models since

we find that this high accuracy is necessary to allow for

orders of the expansion larger than one. In principle, our

tool allows for arbitrary precision, in practice this limit is

hampered by numerical (lack of precision) and mathe-

matical (lack of asymptotic limit) issues. Unlike the

available approximate methods to differentiate between

waves and balanced flow, such as the Lagrangian fre-

quency method (Shakespeare and Taylor 2015) or the

optimal potential vorticity balance method (Viúdez and
Dritschel 2004), a Fourier transform of themodel state is

necessary in Warn et al.’s approach. The application of

our decomposition tool is therefore more straightfor-

ward to idealized settings, whereas the approximate

methods can be more readily applied to realistic scenarios

but at the cost of a less accurate decomposition and

perhaps a misinterpretation of the wavelike signals. We

plan a comparison of the performance of the different

methods in idealized models to transfer the results and to

use the methods in the realistic ocean models as well.

In a numerical simulation of lateral shear instability

with a single-layer model our novel tool can be suc-

cessfully applied up to fourth order, which allows us to

diagnose the gravity wave signal to this order of accu-

racy. Only in the case of a strong lateral shear, a near

inertial wave signal is detected at higher orders of Ro in

the model simulations. This result of weak wave gener-

ation is in agreement to McIntyre and Norton (2000)

who also reported a minor role of wave generation in a

single layer appropriate to the global atmosphere. The

small but finite wave generation at large Ro we found

could be related to spontaneous gravity wave emission

in the sense of Lighthill radiation, but since local Rossby

numbers well exceed unity, symmetric instability due to

the lateral shear could also be the cause of the wave

signal. The amplitude of the wave signal, however,

shows an exponential scaling with respect to Ro in

agreement to previous suggestions of classical sponta-

neous wave generation (Vanneste and Yavneh 2004;

Vanneste 2013).

As compared to the decomposition up to fourth order

in Ro in the single-layer model, our novel tool can ro-

bustly identify wave signals at least up to third order in

Ro in the vertically resolved model, where the reduction

in accuracy is most likely related to the error in nu-

merical precision. In the vertically resolved model with

lateral and vertical shear small enough to avoid static

instabilities, the diagnosis and the scaling behavior with

respect to Ro suggest that there is a negligibly small

FIG. 5. As in Fig. 4, but with larger amplitude of 1 in the zonal velocity of the initial condition and for Ro5 0:1.
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wave signal. Only if the shear becomes strong enough

to generate static instabilities the emission of waves is

detected with lateral wavelengths of a fraction of the

Rossby radius and a higher vertical mode than the

balanced flow. This emission is localized in space and

time to the occurrence of static instabilities and the

waves closely resemble the wavelike signals often seen

before in numerical simulations (e.g., Plougonven and

Snyder 2007; Hien et al. 2018; Chouksey et al. 2018).

Relatively larger amplitudes of waves generated by

convective or symmetric instabilities compared to the ones

generated by spontaneous emission are also found and

discussed in Chouksey (2018) in a suite of numerical ex-

periments with different configurations and for a range of

different Ro. There, however, the method to differentiate

waves from balanced flow follows the one byMachenhauer

(1977) or uses the omega equation, and is thus only accurate

to first order in Ro, such that the amplitude of spontaneous

wave emission is most likely overestimated.

We cannot rule out the possibility that in other model

configurations than what we have discussed here (and in

Chouksey 2018) spontaneous wave emission in the sense

of Lighthill radiation plays a more important role. We

have tested several different configurations including

also ones with vertical shear as before but only weak

lateral shear and always found the same result: hardly

any wave generation in general, but enhanced wave

generation when static instabilities are generated by the

balanced flow. In all such cases, the wave signal is lo-

calized in space and time to the sites of static instability.

We also cannot rule out the possibility that waves at

much larger or smaller wavelengths than allowed by our

model grid can be generated. On the other hand, the

model and laboratory experiments in the literature refer

to spontaneously generated waves at similar wavelength

as the dynamical process under investigation, in agree-

ment to the (true) wave signal seen in our experiments

with convective and/or symmetric instabilities.

These results suggest a relatively small role of spon-

taneous wave emission in the classical sense of Lighthill

radiation, and emphasize the role of convective or sym-

metric instabilities during frontogenesis for the generation

of internal waves. We speculate that the internal wave

signals seen and discussed in previous studies based on

numerical simulations and laboratory experiments

(e.g., Plougonven and Snyder 2007; Hien et al. 2018;

Chouksey et al. 2018) may also be generated by con-

vective or symmetric instabilities instead of the classical

spontaneous emission mechanism.
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APPENDIX

Discrete Relations

The discretization of the primitive equations is

given by

›
t
u2 yi1

j2
1 d1i p5 nu 2A(d2i d

1
i 1 d2j d

1
j )

2
u ,

›
t
y1 ui2

j1
1 d1j p5 ny 2A(d2i d

1
i 1 d2j d

1
j )

2
y ,

›
t
b1w

k
2 5 nb 2A(d2i d

1
i 1 d2j d

1
j )

2
b , (A1)

and follows a standard C-grid arrangement. The indices i,

j, k denote discretization in the x, y, and z directions, but

shown only when they are relevant in the individual terms.

Finite differencing operators d1i p5 (pi11 2 pi)/Dx5
d2i11p, where Dx is the grid spacing in x direction, and

averaging operators pi
1 5 (pi 1 pi11)/25 pi11

2 and simi-

lar for the other directions with grid spacingDy andDz are
introduced. The vertical grid has grid points k5 1, . . . , N

with pressure and horizontal velocity at depth level

zk 5Dz(N2 k2 1/2), vertical velocity at depth level

zk 1Dz/2, and surface pressure ps at zN 1Dz/25 0. The

surface boundary condition is then given by

›
t
p
s
52gDz�

N

k051

= � u
k0 2A(d2i d

1
i 1 d2j d

1
j )

2
p
s
. (A2)

As discussed above, the damping term is included here

since otherwise the vertical modes get coupled by the

damping. The nonlinear terms nu, ny, and nb are given

for the primitive equations by

n
u
52d2i (ui

1u
i
1)2 d2j (yi

1u
j
1)2 d2k (wi

1u
k
1) ,

n
y
52d2i (uj
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k
1) ,

n
b
52d2i (ubi

1
)2 d2j (ybj

1
)2 d2k (wbk

1
) . (A3)

For the single-layer model, the discretization of the

nonlinear terms in the momentum equation follows the

energy-conserving scheme by Sadourny (1975) and

similar to nb in Eq. (A3) for the thickness equation.

Integrating the discrete buoyancy equation vertically

and using the hydrostatic relation d1k p5b1
k , the surface

boundary condition, and the integrated continuity

equation wk 52Dz�k

k0051= � uk00 yields

›
t
p
k
52M(= � u

k
)2Dz

 
nb
k/21 �

k05N

k05k11

nb
k0

!

2A(d2i d
1
i 1 d2j d

1
j )

2
p
k

(A4)
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with the discrete vertical mode operator

M(f
k
)5Dz

�
g2

Dz

2

�
�
N

k051

f
k
1Dz2 �
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4
f
k
.

(A5)

The discrete operator M has eigenvalues c2n and ei-

genfunctions fn
k with M(fn

k)5 c2nf
n
k. Taking two finite

differences of the eigenvalue equation yields

�
c2n 1

Dz2

4

�
d2k d

1
k f

n 52fn
k ,

�
g1

Dz

2

�
d1Nf

n 1fn
N 5 0 ,

d21 f
n 5 0. (A6)

Both the integral form and the solution to the differ-

ential form yield identical eigenfunctions and eigen-

values for the discrete grid. Expressing ui,j,k 5�nu
n
i,jf

n
k

and pi,j,k 5�np
n
i,jf

n
k and applying a horizontal Fourier

transform yields the discrete version of the system ma-

trix A of Eq. (9) given in Eden et al. [2019, their Eq.

(50)], although here equipped with damping terms on

the diagonal and for vertical mode number n. The ei-

genvectors and eigenvalues of A are therefore also

identical to the ones in Eden et al. [2019, their Eqs. (51)–

(53)] but with c5 cn, and the eigenvalues also get an

imaginary part related to the damping. The corre-

sponding vertical mode expressions for the auxiliary

variables b and w are wi,j,k 5�n(c
2
n 1Dz2/4)= � und

1
k f

n

and bi,j,k 5�npn[d
2
k f

n 2Dz/(4c2n)(f
n
k 1fn

k21)].

The time stepping scheme solving Eq. (9) (i.e., its

inverse Fourier transform) is

z
n11

2 z
n
5D

t
[iA � (az

n
1bz

n21
)1an̂(z

n
)1bn̂(z

n11
)]

(A7)

with time levels n, the time step Dt, and with the in-

terpolation weights a5 1:51 �, b52(0:51 �). The

parameter �. 0 allows for a stable integration if Dt
is chosen appropriately small. The value of Dt can be

estimated from the eigenvalues of the linear discrete

system vs, which differ in general from the physical ei-

genvalues vs and are given by

v
1,2

5 i ln(z
1,2
)/Dt , z

1,2
5

1

2
2 ia

Dt

2
vs

6
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 4iDtvs

�
b1

a

2

�
2 (Dtvsa)2

r
. (A8)

The complex frequency vs
1 corresponds to a spurious nu-

mericalmode,which is always strongly damped and cannot

be seen in the integrations. The other frequency vs
2 con-

verges to vs for Dt/ 0, but for finite Dt it differs from
vs and becomes complex. For �5 0, I(vs

2). 0 for all

wavenumbers such that the scheme becomes unstable. But

the parameter �. 0 can be chosen for given Dt, such that

I(vs
2), 0 for all vertical modes and lateral wavenumbers

possible on the model grid. We choose �5 0:1 and adjust

Dt accordingly. The integrations are then always stable.
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